為什么需要私人AI知識庫為什么需要私人AI知識庫
是不是厭倦了LLM⼀本正經的答⾮所問、套話...等低效的信息檢索。
私有知識庫在前AI時代就有⾮常多使⽤場景 ,尤其是企業內部知識、個人知識庫等。結合⼀個優秀的 LLM之后 ,能夠讓知識檢索和歸納上升⼀個臺階。
⼩⽩快速搭建個人AI知識庫
個人AI知識庫的⽅案有很多種 ,今天介紹⼀種難度很低且知識檢索效果不錯的⽅案:
AnythingLLM+DeepSeekV3。
• AnythingLLM 是⼀個知識庫管理前端⼯具 ,⽀持上傳知識、 向量化數據、 RAG(檢索增強) ⼀條 龍服務 ,⽽且是開源免費的。
• DeepSeekV3(簡稱DS)是幻⽅量化的⼤模型 ,總體評分和Clad ue3.5不相上下 ,⽽且Token⾮常 便宜 ,本次⽅案使⽤DS作為推理模型。
(AnythingLLM還⽀持其他推理模型 ,如GPT、Claude或者ollama運⾏本地開源模型等)
⼀ 、安裝AnythingLLM
1.下載地址:https://anythingllm.com/ ,⽀持windows、 mac、 Linux系統。
2.打開軟件 ,先設置LLM ,這⾥選DeepSeek ,模型選擇chat(也就是新的V3模型) 。API Key可以 去它們官⽹注冊下 ,充值⼏塊錢就夠⽤了。
3.進⼊⼯作區 ,可以在左下角設置按鈕中進⾏基礎配置 ,如: LLM、嵌⼊模型、 向量數據庫選擇等 ,新 ⼿可以先保持默認設置。 (這⾥單d提下Embedding模型 ,Embedding是將⾼緯度數據嵌⼊低緯度空間⽅便存儲 ,模型性能影 響對后續知識檢索有挺⼤影響 ,建議可以換成bge-m3 ,這個模型對多語⾔和⻓⽂本都⽀持的不錯 ,需
要本地運⾏Ollama加載這個模 , 由于需要安裝Ollama ,新⼿可以跳過這⼀步)。
⼆ 、上傳⽂檔
1.上點擊⼯作空間的上傳按鈕 ,打開上傳
2.⽀持上傳pdf、csv、⾳頻或者抓取⽹頁內容等等。上傳后右鍵加⼊⼯作空間就ok了。

| 資料獲取 | |
智能教育機器人功能介紹 |
|
| 新聞資訊 | |
| == 資訊 == | |
| » 中國機器人視覺傳感器行業市場規模測算邏輯 | |
| » 基于神經符號AI的機器人拆解智能化技術路 | |
| » 機器人專題:具身智能產業深度研究-202 | |
| » 機器人底盤結構圖解-9個M5安裝孔,9個 | |
| » 2026年中國AI智能體營銷趨勢與發展報 | |
| » 機器人的矩陣傳感器:采用壓電元件,人工皮 | |
| » 機器人的觸覺傳感器:應用微限位開關,隔離 | |
| » 機器人的力覺傳感器:金屬電阻型,半導體型 | |
| » 機器人的加速度傳感器的測量方法:速度測量 | |
| » 機器人的速度傳感器:測量平移和旋轉運動的 | |
| » 機器人的位移位置傳感器:直線移動傳感器, | |
| » 機器人應用傳感器時應考慮的問題:程序設計 | |
| » 機器人的感覺順序與策略:變換,處理 | |
| » 機器人多指靈巧手的神經控制的原理:控制系 | |
| » 機器人自適應模糊控制: PID 模糊控制 | |
| == 機器人推薦 == | |
服務機器人(迎賓、講解、導診...) |
|
智能消毒機器人 |
|
機器人底盤 |
![]() |